2000 character limit reached
A Convergence Result for Regularized Actor-Critic Methods (1907.06138v2)
Published 13 Jul 2019 in cs.LG and stat.ML
Abstract: In this paper, we present a probability one convergence proof, under suitable conditions, of a certain class of actor-critic algorithms for finding approximate solutions to entropy-regularized MDPs using the machinery of stochastic approximation. To obtain this overall result, we prove the convergence of policy evaluation with general regularizers when using linear approximation architectures and show convergence of entropy-regularized policy improvement.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.