Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identification and Estimation of Discrete Choice Models with Unobserved Choice Sets (1907.04853v3)

Published 9 Jul 2019 in econ.EM and econ.TH

Abstract: We propose a framework for nonparametric identification and estimation of discrete choice models with unobserved choice sets. We recover the joint distribution of choice sets and preferences from a panel dataset on choices. We assume that either the latent choice sets are sparse or that the panel is sufficiently long. Sparsity requires the number of possible choice sets to be relatively small. It is satisfied, for instance, when the choice sets are nested, or when they form a partition. Our estimation procedure is computationally fast and uses mixed-integer optimization to recover the sparse support of choice sets. Analyzing the ready-to-eat cereal industry using a household scanner dataset, we find that ignoring the unobservability of choice sets can lead to biased estimates of preferences due to significant latent heterogeneity in choice sets.

Summary

We haven't generated a summary for this paper yet.