Papers
Topics
Authors
Recent
2000 character limit reached

Identification and Estimation of Discrete Choice Models with Unobserved Choice Sets

Published 9 Jul 2019 in econ.EM and econ.TH | (1907.04853v3)

Abstract: We propose a framework for nonparametric identification and estimation of discrete choice models with unobserved choice sets. We recover the joint distribution of choice sets and preferences from a panel dataset on choices. We assume that either the latent choice sets are sparse or that the panel is sufficiently long. Sparsity requires the number of possible choice sets to be relatively small. It is satisfied, for instance, when the choice sets are nested, or when they form a partition. Our estimation procedure is computationally fast and uses mixed-integer optimization to recover the sparse support of choice sets. Analyzing the ready-to-eat cereal industry using a household scanner dataset, we find that ignoring the unobservability of choice sets can lead to biased estimates of preferences due to significant latent heterogeneity in choice sets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.