Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Metamorphic Detection of Adversarial Examples in Deep Learning Models With Affine Transformations (1907.04774v1)

Published 10 Jul 2019 in cs.CV, cs.LG, and eess.IV

Abstract: Adversarial attacks are small, carefully crafted perturbations, imperceptible to the naked eye; that when added to an image cause deep learning models to misclassify the image with potentially detrimental outcomes. With the rise of artificial intelligence models in consumer safety and security intensive industries such as self-driving cars, camera surveillance and face recognition, there is a growing need for guarding against adversarial attacks. In this paper, we present an approach that uses metamorphic testing principles to automatically detect such adversarial attacks. The approach can detect image manipulations that are so small, that they are impossible to detect by a human through visual inspection. By applying metamorphic relations based on distance ratio preserving affine image transformations which compare the behavior of the original and transformed image; we show that our proposed approach can determine whether or not the input image is adversarial with a high degree of accuracy.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.