Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A homogenized limit for the 2D Euler equations in a perforated domain (1907.04131v2)

Published 9 Jul 2019 in math.AP

Abstract: We study the motion of an ideal incompressible fluid in a perforated domain. The porous medium is composed of inclusions of size $a$ separated by distances $\tilde d$ and the fluid fills the exterior. We analyse the asymptotic behavior of the fluid when $(a,\tilde d) \to (0,0)$. If the inclusions are distributed on the unit square, this issue is studied recently when $\frac{\tilde d}a$ tends to zero or infinity, leaving aside the critical case where the volume fraction of the porous medium is below its possible maximal value but non-zero. In this paper, we provide the first result in this regime. In contrast with former results, we obtain an Euler type equation where a homogenized term appears in the elliptic problem relating the velocity and the vorticity. Our analysis is based on the so-called method of reflections whose convergence provides novel estimates on the solutions to the div-curl problem which is involved in the 2D-Euler equations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.