Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

Compensated Convexity on Bounded Domains, Mixed Moreau Envelopes and Computational Methods (1907.02286v2)

Published 4 Jul 2019 in math.NA and cs.NA

Abstract: Compensated convex transforms have been introduced for extended real-valued functions defined over $\mathbb{R}n$. In their application to image processing, interpolation, and shape interrogation, where one deals with functions defined over a bounded domain, one was making the implicit assumption that the function coincides with its transform at the boundary of the data domain. In this paper, we introduce local compensated convex transforms for functions defined in bounded open convex subsets $\Omega$ of $\mathbb{R}n$ by making specific extensions of the function to the whole space, and establish their relations to globally defined compensated convex transforms via the mixed critical Moreau envelopes. We find that the compensated convex transforms of such extensions coincide with the local compensated convex transforms in the closure of $\Omega$. We also propose a numerical scheme for computing Moreau envelopes, establishing convergence of the scheme with the rate of convergence depending on the regularity of the original function. We give an estimate of the number of iterations needed for computing the discrete Moreau envelope. We then apply the local compensated convex transforms to image processing and shape interrogation. Our results are compared with those obtained by using schemes based on computing the convex envelope from the original definition of compensated convex transforms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.