Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An External Knowledge Enhanced Multi-label Charge Prediction Approach with Label Number Learning (1907.02205v1)

Published 4 Jul 2019 in cs.CL and cs.LG

Abstract: Multi-label charge prediction is a task to predict the corresponding accusations for legal cases, and recently becomes a hot topic. However, current studies use rough methods to deal with the label number. These methods manually set parameters to select label numbers, which has an effect in final prediction quality. We propose an external knowledge enhanced multi-label charge prediction approach that has two phases. One is charge label prediction phase with external knowledge from law provisions, the other one is number learning phase with a number learning network (NLN) designed. Our approach enhanced by external knowledge can automatically adjust the threshold to get label number of law cases. It combines the output probabilities of samples and their corresponding label numbers to get final prediction results. In experiments, our approach is connected to some state of-the art deep learning models. By testing on the biggest published Chinese law dataset, we find that our approach has improvements on these models. We future conduct experiments on multi-label samples from the dataset. In items of macro-F1, the improvement of baselines with our approach is 3%-5%; In items of micro-F1, the significant improvement of our approach is 5%-15%. The experiment results show the effectiveness our approach for multi-label charge prediction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Duan Wei (1 paper)
  2. Li Lin (91 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.