Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
93 tokens/sec
Gemini 2.5 Pro Premium
54 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
225 tokens/sec
2000 character limit reached

Online Evaluation of Audiences for Targeted Advertising via Bandit Experiments (1907.02178v3)

Published 4 Jul 2019 in cs.LG and stat.ML

Abstract: Firms implementing digital advertising campaigns face a complex problem in determining the right match between their advertising creatives and target audiences. Typical solutions to the problem have leveraged non-experimental methods, or used "split-testing" strategies that have not explicitly addressed the complexities induced by targeted audiences that can potentially overlap with one another. This paper presents an adaptive algorithm that addresses the problem via online experimentation. The algorithm is set up as a contextual bandit and addresses the overlap issue by partitioning the target audiences into disjoint, non-overlapping sub-populations. It learns an optimal creative display policy in the disjoint space, while assessing in parallel which creative has the best match in the space of possibly overlapping target audiences. Experiments show that the proposed method is more efficient compared to naive "split-testing" or non-adaptive "A/B/n" testing based methods. We also describe a testing product we built that uses the algorithm. The product is currently deployed on the advertising platform of JD.com, an eCommerce company and a publisher of digital ads in China.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.