Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Exact Augmented Lagrangian Duality for Mixed Integer Quadratic Programming (1907.00920v1)

Published 1 Jul 2019 in math.OC

Abstract: Mixed integer quadratic programming (MIQP) is the problem of minimizing a convex quadratic function over mixed integer points in a rational polyhedron. This paper focuses on the augmented Lagrangian dual (ALD) for MIQP. ALD augments the usual Lagrangian dual with a weighted nonlinear penalty on the dualized constraints. We first prove that ALD will reach a zero duality gap asymptotically as the weight on the penalty goes to infinity under some mild conditions on the penalty function. We next show that a finite penalty weight is enough for a zero gap when we use any norm as the penalty function. Finally, we prove a polynomially bound on the weight on the penalty term to obtain a zero gap.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.