Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scene Text Magnifier (1907.00693v2)

Published 17 Jun 2019 in cs.CV, cs.LG, and stat.ML

Abstract: Scene text magnifier aims to magnify text in natural scene images without recognition. It could help the special groups, who have myopia or dyslexia to better understand the scene. In this paper, we design the scene text magnifier through interacted four CNN-based networks: character erasing, character extraction, character magnify, and image synthesis. The architecture of the networks are extended based on the hourglass encoder-decoders. It inputs the original scene text image and outputs the text magnified image while keeps the background unchange. Intermediately, we can get the side-output results of text erasing and text extraction. The four sub-networks are first trained independently and fine-tuned in end-to-end mode. The training samples for each stage are processed through a flow with original image and text annotation in ICDAR2013 and Flickr dataset as input, and corresponding text erased image, magnified text annotation, and text magnified scene image as output. To evaluate the performance of text magnifier, the Structural Similarity is used to measure the regional changes in each character region. The experimental results demonstrate our method can magnify scene text effectively without effecting the background.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Toshiki Nakamura (5 papers)
  2. Anna Zhu (9 papers)
  3. Seiichi Uchida (85 papers)
Citations (1)