Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing Utility of Visual Context in Multimodal Speech Recognition Under Noisy Conditions (1907.00477v2)

Published 30 Jun 2019 in cs.CL, cs.SD, and eess.AS

Abstract: Multimodal learning allows us to leverage information from multiple sources (visual, acoustic and text), similar to our experience of the real world. However, it is currently unclear to what extent auxiliary modalities improve performance over unimodal models, and under what circumstances the auxiliary modalities are useful. We examine the utility of the auxiliary visual context in Multimodal Automatic Speech Recognition in adversarial settings, where we deprive the models from partial audio signal during inference time. Our experiments show that while MMASR models show significant gains over traditional speech-to-text architectures (upto 4.2% WER improvements), they do not incorporate visual information when the audio signal has been corrupted. This shows that current methods of integrating the visual modality do not improve model robustness to noise, and we need better visually grounded adaptation techniques.

Citations (8)

Summary

We haven't generated a summary for this paper yet.