Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved Outlier Detection

Published 26 Jun 2019 in cs.DS, cs.LG, math.ST, stat.ML, and stat.TH | (1906.11366v1)

Abstract: We study two problems in high-dimensional robust statistics: \emph{robust mean estimation} and \emph{outlier detection}. In robust mean estimation the goal is to estimate the mean $\mu$ of a distribution on $\mathbb{R}d$ given $n$ independent samples, an $\varepsilon$-fraction of which have been corrupted by a malicious adversary. In outlier detection the goal is to assign an \emph{outlier score} to each element of a data set such that elements more likely to be outliers are assigned higher scores. Our algorithms for both problems are based on a new outlier scoring method we call QUE-scoring based on \emph{quantum entropy regularization}. For robust mean estimation, this yields the first algorithm with optimal error rates and nearly-linear running time $\widetilde{O}(nd)$ in all parameters, improving on the previous fastest running time $\widetilde{O}(\min(nd/\varepsilon6, nd2))$. For outlier detection, we evaluate the performance of QUE-scoring via extensive experiments on synthetic and real data, and demonstrate that it often performs better than previously proposed algorithms. Code for these experiments is available at https://github.com/twistedcubic/que-outlier-detection .

Citations (96)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.