Papers
Topics
Authors
Recent
2000 character limit reached

Investigating Biases in Textual Entailment Datasets

Published 23 Jun 2019 in cs.CL and cs.LG | (1906.09635v1)

Abstract: The ability to understand logical relationships between sentences is an important task in language understanding. To aid in progress for this task, researchers have collected datasets for machine learning and evaluation of current systems. However, like in the crowdsourced Visual Question Answering (VQA) task, some biases in the data inevitably occur. In our experiments, we find that performing classification on just the hypotheses on the SNLI dataset yields an accuracy of 64%. We analyze the bias extent in the SNLI and the MultiNLI dataset, discuss its implication, and propose a simple method to reduce the biases in the datasets.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.