Papers
Topics
Authors
Recent
2000 character limit reached

The phase diagram of approximation rates for deep neural networks

Published 22 Jun 2019 in cs.NE and cs.LG | (1906.09477v2)

Abstract: We explore the phase diagram of approximation rates for deep neural networks and prove several new theoretical results. In particular, we generalize the existing result on the existence of deep discontinuous phase in ReLU networks to functional classes of arbitrary positive smoothness, and identify the boundary between the feasible and infeasible rates. Moreover, we show that all networks with a piecewise polynomial activation function have the same phase diagram. Next, we demonstrate that standard fully-connected architectures with a fixed width independent of smoothness can adapt to smoothness and achieve almost optimal rates. Finally, we consider deep networks with periodic activations ("deep Fourier expansion") and prove that they have very fast, nearly exponential approximation rates, thanks to the emerging capability of the network to implement efficient lookup operations.

Citations (113)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.