Papers
Topics
Authors
Recent
2000 character limit reached

Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes

Published 22 Jun 2019 in stat.ML and cs.LG | (1906.09360v2)

Abstract: We implement gradient-based variational inference routines for Wishart and inverse Wishart processes, which we apply as Bayesian models for the dynamic, heteroskedastic covariance matrix of a multivariate time series. The Wishart and inverse Wishart processes are constructed from i.i.d. Gaussian processes, existing variational inference algorithms for which form the basis of our approach. These methods are easy to implement as a black-box and scale favorably with the length of the time series, however, they fail in the case of the Wishart process, an issue we resolve with a simple modification into an additive white noise parameterization of the model. This modification is also key to implementing a factored variant of the construction, allowing inference to additionally scale to high-dimensional covariance matrices. Through experimentation, we demonstrate that some (but not all) model variants outperform multivariate GARCH when forecasting the covariances of returns on financial instruments.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.