Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Polyphonic ADSR Piano Note Transcription

Published 21 Jun 2019 in cs.SD and eess.AS | (1906.09165v1)

Abstract: We investigate a late-fusion approach to piano transcription, combined with a strong temporal prior in the form of a handcrafted Hidden Markov Model (HMM). The network architecture under consideration is compact in terms of its number of parameters and easy to train with gradient descent. The network outputs are fused over time in the final stage to obtain note segmentations, with an HMM whose transition probabilities are chosen based on a model of attack, decay, sustain, release (ADSR) envelopes, commonly used for sound synthesis. The note segments are then subject to a final binary decision rule to reject too weak note segment hypotheses. We obtain state-of-the-art results on the MAPS dataset, and are able to outperform other approaches by a large margin, when predicting complete note regions from onsets to offsets.

Citations (41)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.