Papers
Topics
Authors
Recent
2000 character limit reached

Query-based Deep Improvisation

Published 21 Jun 2019 in cs.SD, cs.LG, eess.AS, and stat.ML | (1906.09155v1)

Abstract: In this paper we explore techniques for generating new music using a Variational Autoencoder (VAE) neural network that was trained on a corpus of specific style. Instead of randomly sampling the latent states of the network to produce free improvisation, we generate new music by querying the network with musical input in a style different from the training corpus. This allows us to produce new musical output with longer-term structure that blends aspects of the query to the style of the network. In order to control the level of this blending we add a noisy channel between the VAE encoder and decoder using bit-allocation algorithm from communication rate-distortion theory. Our experiments provide new insight into relations between the representational and structural information of latent states and the query signal, suggesting their possible use for composition purposes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.