Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Attention-Guided Deep Regression Model for Landmark Detection in Cephalograms

Published 17 Jun 2019 in eess.IV, cs.CV, cs.LG, and stat.ML | (1906.07549v3)

Abstract: Cephalometric tracing method is usually used in orthodontic diagnosis and treatment planning. In this paper, we propose a deep learning based framework to automatically detect anatomical landmarks in cephalometric X-ray images. We train the deep encoder-decoder for landmark detection, and combine global landmark configuration with local high-resolution feature responses. The proposed frame-work is based on 2-stage u-net, regressing the multi-channel heatmaps for land-mark detection. In this framework, we embed attention mechanism with global stage heatmaps, guiding the local stage inferring, to regress the local heatmap patches in a high resolution. Besides, the Expansive Exploration strategy improves robustness while inferring, expanding the searching scope without increasing model complexity. We have evaluated our framework in the most widely-used public dataset of landmark detection in cephalometric X-ray images. With less computation and manually tuning, our framework achieves state-of-the-art results.

Citations (92)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.