Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Novel Feature Representation for Single-Channel Heartbeat Classification based on Adaptive Fourier Decomposition (1906.07361v1)

Published 18 Jun 2019 in eess.SP

Abstract: This paper proposes a novel approach for heartbeat classification from single-lead electrocardiogram (ECG) signals based on the novel adaptive Fourier decomposition (AFD). AFD is a recently developed signal processing tool that provides useful morphological features, referred to as AFD-derived instantaneous frequency (IF) features, that are different from those provided by traditional tools. A support vector machine (SVM) classifier is trained with the AFD-derived IF features, ECG landmark features, and RR interval features. To evaluate the performance of the trained classifier, the Association for the Advancement of Medical Instrumentation (AAMI) standard is applied to the publicly available benchmark databases, including MIT-BIH arrhythmia database and MIT-BIH supraventricular arrhythmia database, to classify heartbeats from single-lead ECG. The overall performance in terms of sensitivities and positive predictive values is comparable to the state-of-the-art automatic heartbeat classification algorithms based on two-leads ECG.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.