Quadratic $D$-forms with applications to hermitian forms (1906.06474v1)
Abstract: We study some properties of quadratic forms with values in a field whose underlying vector spaces are endowed with the structure of right vector spaces over a division ring extension of that field. Some generalized notions of isotropy, metabolicity and isometry are introduced and used to find a Witt decomposition for these forms. We then associate to every (skew) hermitian form over a division algebra with involution of the first kind a quadratic form defined on its underlying vector space. It is shown that this quadratic form, with its generalized notions of isotropy and isometry, can be used to determine the isotropy behaviour and the isometry class of (skew) hermitian forms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.