Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Deep Learning Architectures for Image-based Depth Reconstruction (1906.06113v1)

Published 14 Jun 2019 in cs.CV, cs.GR, cs.RO, and eess.IV

Abstract: Estimating depth from RGB images is a long-standing ill-posed problem, which has been explored for decades by the computer vision, graphics, and machine learning communities. In this article, we provide a comprehensive survey of the recent developments in this field. We will focus on the works which use deep learning techniques to estimate depth from one or multiple images. Deep learning, coupled with the availability of large training datasets, have revolutionized the way the depth reconstruction problem is being approached by the research community. In this article, we survey more than 100 key contributions that appeared in the past five years, summarize the most commonly used pipelines, and discuss their benefits and limitations. In retrospect of what has been achieved so far, we also conjecture what the future may hold for learning-based depth reconstruction research.

Citations (22)

Summary

We haven't generated a summary for this paper yet.