Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anti dependency distance minimization in short sequences. A graph theoretic approach (1906.05765v2)

Published 13 Jun 2019 in cs.CL

Abstract: Dependency distance minimization (DDm) is a word order principle favouring the placement of syntactically related words close to each other in sentences. Massive evidence of the principle has been reported for more than a decade with the help of syntactic dependency treebanks where long sentences abound. However, it has been predicted theoretically that the principle is more likely to be beaten in short sequences by the principle of surprisal minimization (predictability maximization). Here we introduce a simple binomial test to verify such a hypothesis. In short sentences, we find anti-DDm for some languages from different families. Our analysis of the syntactic dependency structures suggests that anti-DDm is produced by star trees.

Citations (27)

Summary

We haven't generated a summary for this paper yet.