Explicit degree bounds for right factors of linear differential operators (1906.05529v4)
Abstract: If a linear differential operator with rational function coefficients is reducible, its factors may have coefficients with numerators and denominatorsof very high degree. When the base field is $\mathbb C$, we give a completely explicit bound for the degrees of the monic right factors in terms of the degree and the order of the original operator, as well as the largest modulus of the local exponents at all its singularities. As a consequence, if a differential operator $L$ has rational function coefficients over a number field, we get degree bounds for its monic right factors in terms of the degree, the order and the height of $L$, and of the degree of the number field.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.