Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regret Minimization for Reinforcement Learning by Evaluating the Optimal Bias Function (1906.05110v3)

Published 12 Jun 2019 in cs.LG and stat.ML

Abstract: We present an algorithm based on the \emph{Optimism in the Face of Uncertainty} (OFU) principle which is able to learn Reinforcement Learning (RL) modeled by Markov decision process (MDP) with finite state-action space efficiently. By evaluating the state-pair difference of the optimal bias function $h{*}$, the proposed algorithm achieves a regret bound of $\tilde{O}(\sqrt{SAHT})$\footnote{The symbol $\tilde{O}$ means $O$ with log factors ignored. } for MDP with $S$ states and $A$ actions, in the case that an upper bound $H$ on the span of $h{*}$, i.e., $sp(h{*})$ is known. This result outperforms the best previous regret bounds $\tilde{O}(S\sqrt{AHT}) $\citep{fruit2019improved} by a factor of $\sqrt{S}$. Furthermore, this regret bound matches the lower bound of $\Omega(\sqrt{SAHT}) $\citep{jaksch2010near} up to a logarithmic factor. As a consequence, we show that there is a near optimal regret bound of $\tilde{O}(\sqrt{SADT})$ for MDPs with a finite diameter $D$ compared to the lower bound of $\Omega(\sqrt{SADT}) $\citep{jaksch2010near}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zihan Zhang (121 papers)
  2. Xiangyang Ji (159 papers)
Citations (70)

Summary

We haven't generated a summary for this paper yet.