Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On regularization for a convolutional kernel in neural networks (1906.04866v2)

Published 12 Jun 2019 in cs.LG, cs.NA, math.NA, and stat.ML

Abstract: Convolutional neural network is an important model in deep learning. To avoid exploding/vanishing gradient problems and to improve the generalizability of a neural network, it is desirable to have a convolution operation that nearly preserves the norm, or to have the singular values of the transformation matrix corresponding to a convolutional kernel bounded around $1$. We propose a penalty function that can be used in the optimization of a convolutional neural network to constrain the singular values of the transformation matrix around $1$. We derive an algorithm to carry out the gradient descent minimization of this penalty function in terms of convolution kernels. Numerical examples are presented to demonstrate the effectiveness of the method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube