Papers
Topics
Authors
Recent
Search
2000 character limit reached

Medium-Term Load Forecasting Using Support Vector Regression, Feature Selection, and Symbiotic Organism Search Optimization

Published 11 Jun 2019 in stat.ML, cs.LG, and cs.NE | (1906.04818v1)

Abstract: An accurate load forecasting has always been one of the main indispensable parts in the operation and planning of power systems. Among different time horizons of forecasting, while short-term load forecasting (STLF) and long-term load forecasting (LTLF) have respectively got benefits of accurate predictors and probabilistic forecasting, medium-term load forecasting (MTLF) demands more attention due to its vital role in power system operation and planning such as optimal scheduling of generation units, robust planning program for customer service, and economic supply. In this study, a hybrid method, composed of Support Vector Regression (SVR) and Symbiotic Organism Search Optimization (SOSO) method, is proposed for MTLF. In the proposed forecasting model, SVR is the main part of the forecasting algorithm while SOSO is embedded into it to optimize the parameters of SVR. In addition, a minimum redundancy-maximum relevance feature selection algorithm is used to in the preprocessing of input data. The proposed method is tested on EUNITE competition dataset to demonstrate its proper performance. Furthermore, it is compared with some previous works to show eligibility of our method.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.