Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A short proof of two shuffling theorems for tilings and a weighted generalization (1906.04533v5)

Published 11 Jun 2019 in math.CO

Abstract: Recently, Lai and Rohatgi discovered a shuffling theorem for lozenge tilings of doubly-dented hexagons, which generalized the earlier work of Ciucu. Later, Lai proved an analogous theorem for centrally symmetric tilings, which generalized some other previous work of Ciucu. In this paper, we give a unified proof of these two shuffling theorems, which also covers the weighted case. Unlike the original proofs, our arguments do not use the graphical condensation method but instead rely on a well-known tiling enumeration formula due to Cohn, Larsen, and Propp. Fulmek independently found a similar proof of Lai and Rohatgi's original shuffling theorem. Our proof also gives a combinatorial explanation for Ciucu's recent conjecture relating the total number and the number of centrally symmetric lozenge tilings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.