Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combinatorial Optimization based Feature Selection Method: A study on Network Intrusion Detection (1906.04494v3)

Published 11 Jun 2019 in cs.CR and cs.NI

Abstract: Advancements in computer networks and communication technologies like software defined networks (SDN), Internet of things (IoT), microservices architecture, cloud computing and network function virtualization (NFV) have opened new fronts and challenges for security experts to combat against modern cyberattacks. Relying on perimeter defense and signature-based network security solutions like Intrusion Detection and Prevention Systems (IDS/IPS) have failed to deliver adequate level of security against new attack vectors such as advance persistent threats, zero days, ransomware, botnets and other forms of targeted attacks. Recent developments in machine learning and cognitive computing have shown great potential to detect unknown and new intrusion events where legacy misuse and anomaly based intrusion detection systems usually fail. In this research study we applied state of the art machine learning algorithms on UNSW-NB15 dataset for potential applicability to detect new attacks. We also proposed a novel wrapper based feature selection technique TS-RF using metaheuristic Tabu Search (TS) algorithm and Random Forest (RF) ensemble classifier. Results obtained by applying proposed feature selection technique i.e. TS-RF on UNSW-NB15 dataset show improvement in overall intrusion detection accuracy while it reduces computation complexity as it removes more than 60% features.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anjum Nazir (2 papers)
  2. Rizwan Ahmed Khan (16 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.