Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian Model of Dose-Response for Cancer Drug Studies (1906.04072v3)

Published 10 Jun 2019 in stat.ML, cs.LG, and stat.ME

Abstract: Exploratory cancer drug studies test multiple tumor cell lines against multiple candidate drugs. The goal in each paired (cell line, drug) experiment is to map out the dose-response curve of the cell line as the dose level of the drug increases. We propose Bayesian Tensor Filtering (BTF), a hierarchical Bayesian model for dose-response modeling in multi-sample, multi-treatment cancer drug studies. BTF uses low-dimensional embeddings to share statistical strength between similar drugs and similar cell lines. Structured shrinkage priors in BTF encourage smoothness in the dose-response curves while remaining adaptive to sharp jumps when the data call for it. We focus on a pair of cancer drug studies exhibiting a particular pathology in their experimental design, leading us to a non-conjugate monotone mixture-of-Gammas likelihood. To perform posterior inference, we develop a variant of the elliptical slice sampling algorithm for sampling from linearly-constrained multivariate normal priors with non-conjugate likelihoods. In benchmarks, BTF outperforms state-of-the-art methods for covariance regression and dynamic Poisson matrix factorization. On the two cancer drug studies, BTF outperforms the current standard approach in biology and reveals potential new biomarkers of drug sensitivity in cancer. Code is available at https://github.com/tansey/functionalmf.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wesley Tansey (21 papers)
  2. Christopher Tosh (14 papers)
  3. David M. Blei (111 papers)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com