Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-domain feature disentanglement for interpretable modeling of tumor microenvironment impact on drug response (2311.09264v1)

Published 15 Nov 2023 in cs.LG, cs.AI, and q-bio.QM

Abstract: High-throughput screening technology has facilitated the generation of large-scale drug responses across hundreds of cancer cell lines. However, there exists significant discrepancy between in vitro cell lines and actual tumors in vivo in terms of their response to drug treatments, because of tumors comprise of complex cellular compositions and histopathology structure, known as tumor microenvironment (TME), which greatly influences the drug cytotoxicity against tumor cells. To date, no study has focused on modeling the impact of the TME on clinical drug response. This paper proposed a domain adaptation network for feature disentanglement to separate representations of cancer cells and TME of a tumor in patients. Two denoising autoencoders were separately used to extract features from cell lines (source domain) and tumors (target domain) for partial domain alignment and feature decoupling. The specific encoder was enforced to extract information only about TME. Moreover, to ensure generalizability to novel drugs, we applied a graph attention network to learn the latent representation of drugs, allowing us to linearly model the drug perturbation on cellular state in latent space. We calibrated our model on a benchmark dataset and demonstrated its superior performance in predicting clinical drug response and dissecting the influence of the TME on drug efficacy.

Summary

We haven't generated a summary for this paper yet.