Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical Likelihood for Contextual Bandits (1906.03323v4)

Published 7 Jun 2019 in cs.LG and stat.ML

Abstract: We propose an estimator and confidence interval for computing the value of a policy from off-policy data in the contextual bandit setting. To this end we apply empirical likelihood techniques to formulate our estimator and confidence interval as simple convex optimization problems. Using the lower bound of our confidence interval, we then propose an off-policy policy optimization algorithm that searches for policies with large reward lower bound. We empirically find that both our estimator and confidence interval improve over previous proposals in finite sample regimes. Finally, the policy optimization algorithm we propose outperforms a strong baseline system for learning from off-policy data.

Citations (9)

Summary

We haven't generated a summary for this paper yet.