Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When and Why Metaheuristics Researchers Can Ignore "No Free Lunch" Theorems (1906.03280v1)

Published 7 Jun 2019 in cs.NE

Abstract: The No Free Lunch (NFL) theorem for search and optimisation states that averaged across all possible objective functions on a fixed search space, all search algorithms perform equally well. Several refined versions of the theorem find a similar outcome when averaging across smaller sets of functions. This paper argues that NFL results continue to be misunderstood by many researchers, and addresses this issue in several ways. Existing arguments against real-world implications of NFL results are collected and re-stated for accessibility, and new ones are added. Specific misunderstandings extant in the literature are identified, with speculation as to how they may have arisen. This paper presents an argument against a common paraphrase of NFL findings -- that algorithms must be specialised to problem domains in order to do well -- after problematising the usually undefined term "domain". It provides novel concrete counter-examples illustrating cases where NFL theorems do not apply. In conclusion it offers a novel view of the real meaning of NFL, incorporating the anthropic principle and justifying the position that in many common situations researchers can ignore NFL.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com