Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Word Embeddings with Domain Awareness

Published 7 Jun 2019 in cs.CL | (1906.03249v3)

Abstract: Word embeddings are traditionally trained on a large corpus in an unsupervised setting, with no specific design for incorporating domain knowledge. This can lead to unsatisfactory performances when training data originate from heterogeneous domains. In this paper, we propose two novel mechanisms for domain-aware word embedding training, namely domain indicator and domain attention, which integrate domain-specific knowledge into the widely used SG and CBOW models, respectively. The two methods are based on a joint learning paradigm and ensure that words in a target domain are intensively focused when trained on a source domain corpus. Qualitative and quantitative evaluation confirm the validity and effectiveness of our models. Compared to baseline methods, our method is particularly effective in near-cold-start scenarios.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.