Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Spherical Quantization for Image Search (1906.02865v1)

Published 7 Jun 2019 in cs.CV

Abstract: Hashing methods, which encode high-dimensional images with compact discrete codes, have been widely applied to enhance large-scale image retrieval. In this paper, we put forward Deep Spherical Quantization (DSQ), a novel method to make deep convolutional neural networks generate supervised and compact binary codes for efficient image search. Our approach simultaneously learns a mapping that transforms the input images into a low-dimensional discriminative space, and quantizes the transformed data points using multi-codebook quantization. To eliminate the negative effect of norm variance on codebook learning, we force the network to L_2 normalize the extracted features and then quantize the resulting vectors using a new supervised quantization technique specifically designed for points lying on a unit hypersphere. Furthermore, we introduce an easy-to-implement extension of our quantization technique that enforces sparsity on the codebooks. Extensive experiments demonstrate that DSQ and its sparse variant can generate semantically separable compact binary codes outperforming many state-of-the-art image retrieval methods on three benchmarks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sepehr Eghbali (4 papers)
  2. Ladan Tahvildari (6 papers)
Citations (21)