Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model predictive control with stage cost shaping inspired by reinforcement learning (1906.02580v2)

Published 6 Jun 2019 in math.OC, cs.SY, eess.SY, and math.DS

Abstract: This work presents a suboptimality study of a particular model predictive control with a stage cost shaping based on the ideas of reinforcement learning. The focus of the suboptimality study is to derive quantities relating the infinite-horizon cost function under the said variant of model predictive control to the respective infinite-horizon value function. The basis control scheme involves usual stabilizing constraints comprising of a terminal set and a terminal cost in the form of a local Lyapunov function. The stage cost is adapted using the principles of Q-learning, a particular approach to reinforcement learning. The work is concluded by case studies with two systems for wide ranges of initial conditions.

Citations (8)

Summary

We haven't generated a summary for this paper yet.