Papers
Topics
Authors
Recent
2000 character limit reached

Contextual Relabelling of Detected Objects

Published 6 Jun 2019 in cs.CV and cs.AI | (1906.02534v1)

Abstract: Contextual information, such as the co-occurrence of objects and the spatial and relative size among objects provides deep and complex information about scenes. It also can play an important role in improving object detection. In this work, we present two contextual models (rescoring and re-labeling models) that leverage contextual information (16 contextual relationships are applied in this paper) to enhance the state-of-the-art RCNN-based object detection (Faster RCNN). We experimentally demonstrate that our models lead to enhancement in detection performance using the most common dataset used in this field (MSCOCO).

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.