2000 character limit reached
Accurate phase retrieval of complex point spread functions with deep residual neural networks
Published 4 Jun 2019 in eess.IV and physics.optics | (1906.01748v1)
Abstract: Phase retrieval, i.e. the reconstruction of phase information from intensity information, is a central problem in many optical systems. Here, we demonstrate that a deep residual neural net is able to quickly and accurately perform this task for arbitrary point spread functions (PSFs) formed by Zernike-type phase modulations. Five slices of the 3D PSF at different focal positions within a two micron range around the focus are sufficient to retrieve the first six orders of Zernike coefficients.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.