Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Strong and Robust Baseline for Text-Image Matching

Published 4 Jun 2019 in cs.LG, cs.CL, and cs.CV | (1906.01205v1)

Abstract: We review the current schemes of text-image matching models and propose improvements for both training and inference. First, we empirically show limitations of two popular loss (sum and max-margin loss) widely used in training text-image embeddings and propose a trade-off: a kNN-margin loss which 1) utilizes information from hard negatives and 2) is robust to noise as all $K$-most hardest samples are taken into account, tolerating \emph{pseudo} negatives and outliers. Second, we advocate the use of Inverted Softmax (\textsc{Is}) and Cross-modal Local Scaling (\textsc{Csls}) during inference to mitigate the so-called hubness problem in high-dimensional embedding space, enhancing scores of all metrics by a large margin.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.