Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

A Strong and Robust Baseline for Text-Image Matching (1906.01205v1)

Published 4 Jun 2019 in cs.LG, cs.CL, and cs.CV

Abstract: We review the current schemes of text-image matching models and propose improvements for both training and inference. First, we empirically show limitations of two popular loss (sum and max-margin loss) widely used in training text-image embeddings and propose a trade-off: a kNN-margin loss which 1) utilizes information from hard negatives and 2) is robust to noise as all $K$-most hardest samples are taken into account, tolerating \emph{pseudo} negatives and outliers. Second, we advocate the use of Inverted Softmax (\textsc{Is}) and Cross-modal Local Scaling (\textsc{Csls}) during inference to mitigate the so-called hubness problem in high-dimensional embedding space, enhancing scores of all metrics by a large margin.

Citations (16)

Summary

We haven't generated a summary for this paper yet.