Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dynamically Composing Domain-Data Selection with Clean-Data Selection by "Co-Curricular Learning" for Neural Machine Translation

Published 3 Jun 2019 in cs.CL and cs.LG | (1906.01130v1)

Abstract: Noise and domain are important aspects of data quality for neural machine translation. Existing research focus separately on domain-data selection, clean-data selection, or their static combination, leaving the dynamic interaction across them not explicitly examined. This paper introduces a "co-curricular learning" method to compose dynamic domain-data selection with dynamic clean-data selection, for transfer learning across both capabilities. We apply an EM-style optimization procedure to further refine the "co-curriculum". Experiment results and analysis with two domains demonstrate the effectiveness of the method and the properties of data scheduled by the co-curriculum.

Citations (55)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.