Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generative Adversarial Networks for Distributed Intrusion Detection in the Internet of Things

Published 3 Jun 2019 in cs.CR, cs.LG, cs.NI, and stat.ML | (1906.00567v1)

Abstract: To reap the benefits of the Internet of Things (IoT), it is imperative to secure the system against cyber attacks in order to enable mission critical and real-time applications. To this end, intrusion detection systems (IDSs) have been widely used to detect anomalies caused by a cyber attacker in IoT systems. However, due to the large-scale nature of the IoT, an IDS must operate in a distributed manner with minimum dependence on a central controller. Moreover, in many scenarios such as health and financial applications, the datasets are private and IoTDs may not intend to share such data. To this end, in this paper, a distributed generative adversarial network (GAN) is proposed to provide a fully distributed IDS for the IoT so as to detect anomalous behavior without reliance on any centralized controller. In this architecture, every IoTD can monitor its own data as well as neighbor IoTDs to detect internal and external attacks. In addition, the proposed distributed IDS does not require sharing the datasets between the IoTDs, thus, it can be implemented in IoTs that preserve the privacy of user data such as health monitoring systems or financial applications. It is shown analytically that the proposed distributed GAN has higher accuracy of detecting intrusion compared to a standalone IDS that has access to only a single IoTD dataset. Simulation results show that, the proposed distributed GAN-based IDS has up to 20% higher accuracy, 25% higher precision, and 60% lower false positive rate compared to a standalone GAN-based IDS.

Citations (79)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.