Formal language convexity in left-orderable groups (1905.13001v2)
Abstract: We propose a criterion for preserving the regularity of a formal language representation when passing from groups to subgroups. We use this criterion to show that the regularity of a positive cone language in a left-orderable group passes to its finite index subgroups, and to show that there exists no left order on a finitely generated acylindrically hyperbolic group such that the corresponding positive cone is represented by a quasi-geodesic regular language. We also answer one of Navas' questions by giving an example of an infinite family of groups which admit a positive cone that is generated by exactly $k$ generators, for every $k \geq 3$. As a special case of our construction, we obtain a finitely generated positive cone for $F_2 \times \mathbb{Z}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.