Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Learning Temporal Causal Sequence Relationships from Real-Time Time-Series (1905.12262v6)

Published 29 May 2019 in cs.LG, cs.AI, and cs.LO

Abstract: We aim to mine temporal causal sequences that explain observed events (consequents) in time-series traces. Causal explanations of key events in a time-series has applications in design debugging, anomaly detection, planning, root-cause analysis and many more. We make use of decision trees and interval arithmetic to mine sequences that explain defining events in the time-series. We propose modified decision tree construction metrics to handle the non-determinism introduced by the temporal dimension. The mined sequences are expressed in a readable temporal logic language that is easy to interpret. The application of the proposed methodology is illustrated through various examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.