Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Auditory Separation of a Conversation from Background via Attentional Gating (1905.10751v1)

Published 26 May 2019 in cs.SD, cs.LG, and eess.AS

Abstract: We present a model for separating a set of voices out of a sound mixture containing an unknown number of sources. Our Attentional Gating Network (AGN) uses a variable attentional context to specify which speakers in the mixture are of interest. The attentional context is specified by an embedding vector which modifies the processing of a neural network through an additive bias. Individual speaker embeddings are learned to separate a single speaker while superpositions of the individual speaker embeddings are used to separate sets of speakers. We first evaluate AGN on a traditional single speaker separation task and show an improvement of 9% with respect to comparable models. Then, we introduce a new task to separate an arbitrary subset of voices from a mixture of an unknown-sized set of voices, inspired by the human ability to separate a conversation of interest from background chatter at a cafeteria. We show that AGN is the only model capable of solving this task, performing only 7% worse than on the single speaker separation task.

Citations (2)

Summary

We haven't generated a summary for this paper yet.