Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adding Intuitive Physics to Neural-Symbolic Capsules Using Interaction Networks (1905.09891v2)

Published 23 May 2019 in cs.CV

Abstract: Many current methods to learn intuitive physics are based on interaction networks and similar approaches. However, they rely on information that has proven difficult to estimate directly from image data in the past. We aim to narrow this gap by inferring all the semantic information needed from raw pixel data in the form of a scene-graph. Our approach is based on neural-symbolic capsules, which identify which objects in the scene are static, dynamic, elastic or rigid, possible joints between them, as well as their collision information. By integrating all this with interaction networks, we demonstrate how our method is able to learn intuitive physics directly from image sequences and apply its knowledge to new scenes and objects, resulting in an inverse-simulation pipeline.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.