Papers
Topics
Authors
Recent
Search
2000 character limit reached

forgeNet: A graph deep neural network model using tree-based ensemble classifiers for feature extraction

Published 23 May 2019 in stat.ML, cs.LG, and cs.SI | (1905.09889v1)

Abstract: A unique challenge in predictive model building for omics data has been the small number of samples $(n)$ versus the large amount of features $(p)$. This "$n\ll p$" property brings difficulties for disease outcome classification using deep learning techniques. Sparse learning by incorporating external gene network information such as the graph-embedded deep feedforward network (GEDFN) model has been a solution to this issue. However, such methods require an existing feature graph, and potential mis-specification of the feature graph can be harmful on classification and feature selection. To address this limitation and develop a robust classification model without relying on external knowledge, we propose a \underline{for}est \underline{g}raph-\underline{e}mbedded deep feedforward \underline{net}work (forgeNet) model, to integrate the GEDFN architecture with a forest feature graph extractor, so that the feature graph can be learned in a supervised manner and specifically constructed for a given prediction task. To validate the method's capability, we experimented the forgeNet model with both synthetic and real datasets. The resulting high classification accuracy suggests that the method is a valuable addition to sparse deep learning models for omics data.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.