Papers
Topics
Authors
Recent
2000 character limit reached

Incorporating Human Domain Knowledge in 3D LiDAR-based Semantic Segmentation

Published 23 May 2019 in cs.RO, cs.CV, and eess.IV | (1905.09533v1)

Abstract: This work studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via incorporating human domain knowledge into the neural network model to reduce the demand for large numbers of manual annotations and improve the training efficiency. We first pretrain a model with autogenerated samples from a rule-based classifier so that human knowledge can be propagated into the network. Based on the pretrained model, only a small set of annotations is required for further fine-tuning. Quantitative experiments show that the pretrained model achieves better performance than random initialization in almost all cases; furthermore, our method can achieve similar performance with fewer manual annotations.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.