Papers
Topics
Authors
Recent
Search
2000 character limit reached

Segmentation-Aware Hyperspectral Image Classification

Published 22 May 2019 in cs.CV | (1905.09211v1)

Abstract: In this paper, we propose an unified hyperspectral image classification method which takes three-dimensional hyperspectral data cube as an input and produces a classification map. In the proposed method, a deep neural network which uses spectral and spatial information together with residual connections, and pixel affinity network based segmentation-aware superpixels are used together. In the architecture, segmentation-aware superpixels run on the initial classification map of deep residual network, and apply majority voting on obtained results. Experimental results show that our propoped method yields state-of-the-art results in two benchmark datasets. Moreover, we also show that the segmentation-aware superpixels have great contribution to the success of hyperspectral image classification methods in cases where training data is insufficient.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.