Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustered Multitask Nonnegative Matrix Factorization for Spectral Unmixing of Hyperspectral Data (1905.08032v1)

Published 16 May 2019 in cs.CV

Abstract: In this paper, the new algorithm based on clustered multitask network is proposed to solve spectral unmixing problem in hyperspectral imagery. In the proposed algorithm, the clustered network is employed. Each pixel in the hyperspectral image considered as a node in this network. The nodes in the network are clustered using the fuzzy c-means clustering method. Diffusion least mean square strategy has been used to optimize the proposed cost function. To evaluate the proposed method, experiments are conducted on synthetic and real datasets. Simulation results based on spectral angle distance, abundance angle distance and reconstruction error metrics illustrate the advantage of the proposed algorithm compared with other methods.

Citations (15)

Summary

We haven't generated a summary for this paper yet.