Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Limit of torsion semi-stable Galois representations with unbounded weights (1905.08020v1)

Published 20 May 2019 in math.NT

Abstract: Let $K$ be a complete discrete valuation field of characteristic $(0, p)$ with perfect residue field, and let $T$ be an integral $\mathbb{Z}_p$-representation of $\mathrm{Gal}(\overline{K}/K)$. A theorem of T. Liu says that if $T/pn T$ is torsion semi-stable (resp. crystalline) of uniformly bounded Hodge-Tate weights for all $n \geq 1$, then $T$ is also semi-stable (resp. crystalline). In this note, we show that we can relax the condition of "uniformly bounded Hodge-Tate weights" to an unbounded (log-)growth condition.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.