Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predictive Online Convex Optimization (1905.06263v2)

Published 15 May 2019 in math.OC and cs.LG

Abstract: We incorporate future information in the form of the estimated value of future gradients in online convex optimization. This is motivated by demand response in power systems, where forecasts about the current round, e.g., the weather or the loads' behavior, can be used to improve on predictions made with only past observations. Specifically, we introduce an additional predictive step that follows the standard online convex optimization step when certain conditions on the estimated gradient and descent direction are met. We show that under these conditions and without any assumptions on the predictability of the environment, the predictive update strictly improves on the performance of the standard update. We give two types of predictive update for various family of loss functions. We provide a regret bound for each of our predictive online convex optimization algorithms. Finally, we apply our framework to an example based on demand response which demonstrates its superior performance to a standard online convex optimization algorithm.

Citations (17)

Summary

We haven't generated a summary for this paper yet.