Papers
Topics
Authors
Recent
2000 character limit reached

Geometric Losses for Distributional Learning

Published 15 May 2019 in stat.ML, cs.LG, and math.OC | (1905.06005v1)

Abstract: Building upon recent advances in entropy-regularized optimal transport, and upon Fenchel duality between measures and continuous functions , we propose a generalization of the logistic loss that incorporates a metric or cost between classes. Unlike previous attempts to use optimal transport distances for learning, our loss results in unconstrained convex objective functions, supports infinite (or very large) class spaces, and naturally defines a geometric generalization of the softmax operator. The geometric properties of this loss make it suitable for predicting sparse and singular distributions, for instance supported on curves or hyper-surfaces. We study the theoretical properties of our loss and show-case its effectiveness on two applications: ordinal regression and drawing generation.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.